26,085 research outputs found

    Dimension-Independent MCMC Sampling for Inverse Problems with Non-Gaussian Priors

    Full text link
    The computational complexity of MCMC methods for the exploration of complex probability measures is a challenging and important problem. A challenge of particular importance arises in Bayesian inverse problems where the target distribution may be supported on an infinite dimensional space. In practice this involves the approximation of measures defined on sequences of spaces of increasing dimension. Motivated by an elliptic inverse problem with non-Gaussian prior, we study the design of proposal chains for the Metropolis-Hastings algorithm with dimension independent performance. Dimension-independent bounds on the Monte-Carlo error of MCMC sampling for Gaussian prior measures have already been established. In this paper we provide a simple recipe to obtain these bounds for non-Gaussian prior measures. To illustrate the theory we consider an elliptic inverse problem arising in groundwater flow. We explicitly construct an efficient Metropolis-Hastings proposal based on local proposals, and we provide numerical evidence which supports the theory.Comment: 26 pages, 7 figure

    Backreaction for Einstein-Rosen waves coupled to a massless scalar field

    Full text link
    We present a one-parameter family of exact solutions to Einstein equations that may be used to study the nature of the Green-Wald backreaction framework. Our explicit example is a family of Einstein-Rosen waves coupled to a massless scalar field. This solution may be reinterpreted as a generalized three-torus polarized Gowdy cosmology with scalar and gravitational waves. We use it to illustrate essential properties of the Green-Wald approach. Among other things we show that within our model the Green-Wald framework uniquely determines backreaction for finite size inhomogeneities on a predefined background. The results agree with those calculated in the Charach-Malin approach. In the vacuum limit, the Green-Wald, the Charach-Malin and the Isaacson method imply identical backreaction as expected.Comment: 26 pages; minor changes to match published versio

    Robust permanence for interacting structured populations

    Get PDF
    The dynamics of interacting structured populations can be modeled by dxidt=Ai(x)xi\frac{dx_i}{dt}= A_i (x)x_i where xiRnix_i\in \R^{n_i}, x=(x1,,xk)x=(x_1,\dots,x_k), and Ai(x)A_i(x) are matrices with non-negative off-diagonal entries. These models are permanent if there exists a positive global attractor and are robustly permanent if they remain permanent following perturbations of Ai(x)A_i(x). Necessary and sufficient conditions for robust permanence are derived using dominant Lyapunov exponents λi(μ)\lambda_i(\mu) of the Ai(x)A_i(x) with respect to invariant measures μ\mu. The necessary condition requires maxiλi(μ)>0\max_i \lambda_i(\mu)>0 for all ergodic measures with support in the boundary of the non-negative cone. The sufficient condition requires that the boundary admits a Morse decomposition such that maxiλi(μ)>0\max_i \lambda_i(\mu)>0 for all invariant measures μ\mu supported by a component of the Morse decomposition. When the Morse components are Axiom A, uniquely ergodic, or support all but one population, the necessary and sufficient conditions are equivalent. Applications to spatial ecology, epidemiology, and gene networks are given
    corecore